首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3886篇
  免费   799篇
  国内免费   1429篇
测绘学   7篇
大气科学   46篇
地球物理   724篇
地质学   4545篇
海洋学   411篇
天文学   21篇
综合类   139篇
自然地理   221篇
  2024年   14篇
  2023年   87篇
  2022年   122篇
  2021年   196篇
  2020年   215篇
  2019年   249篇
  2018年   226篇
  2017年   238篇
  2016年   249篇
  2015年   232篇
  2014年   310篇
  2013年   336篇
  2012年   348篇
  2011年   265篇
  2010年   220篇
  2009年   272篇
  2008年   369篇
  2007年   285篇
  2006年   266篇
  2005年   226篇
  2004年   220篇
  2003年   147篇
  2002年   143篇
  2001年   113篇
  2000年   135篇
  1999年   94篇
  1998年   96篇
  1997年   96篇
  1996年   59篇
  1995年   44篇
  1994年   57篇
  1993年   45篇
  1992年   29篇
  1991年   16篇
  1990年   26篇
  1989年   13篇
  1988年   11篇
  1987年   6篇
  1986年   11篇
  1985年   11篇
  1984年   8篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1978年   1篇
排序方式: 共有6114条查询结果,搜索用时 34 毫秒
41.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
42.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   
43.
Catchments consist of distinct landforms that affect the storage and release of subsurface water. Certain landforms may be the main contributors to streamflow during extended dry periods, and these may vary for different catchments in a given region. We present a unique dataset from snapshot field campaigns during low‐flow conditions in 11 catchments across Switzerland to illustrate this. The catchments differed in size (10 to 110 km2), varied from predominantly agricultural lowlands to Alpine areas, and covered a range of physical characteristics. During each snapshot campaign, we jointly measured streamflow and collected water samples for the analysis of major ions and stable water isotopes. For every sampling location (basin), we determined several landscape characteristics from national geo‐datasets, including drainage area, elevation, slope, flowpath length, dominant land use, and geological and geomorphological characteristics, such as the lithology and fraction of quaternary deposits. The results demonstrate very large spatial variability in specific low‐flow discharge and water chemistry: Neighboring sampling locations could differ significantly in their specific discharge, isotopic composition, and ion concentrations, indicating that different sources contribute to streamflow during extended dry periods. However, none of the landscape characteristics that we analysed could explain the spatial variability in specific discharge or streamwater chemistry in multiple catchments. This suggests that local features determine the spatial differences in discharge and water chemistry during low‐flow conditions and that this variability cannot be assessed a priori from available geodata and statistical relations to landscape characteristics. The results furthermore suggest that measurements at the catchment outlet during low‐flow conditions do not reflect the heterogeneity of the different source areas in the catchment that contribute to streamflow.  相似文献   
44.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
45.
Six tourmaline samples were investigated as potential reference materials (RMs) for boron isotope measurement by secondary ion mass spectrometry (SIMS). The tourmaline samples are chemically homogeneous and cover a compositional range of tourmaline supergroup minerals (primarily Fe, Mg and Li end‐members). Additionally, they have homogeneous boron delta values with intermediate precision values during SIMS analyses of less than 0.6‰ (2s). These samples were compared with four established tourmaline RMs, that is, schorl IAEA‐B‐4 and three Harvard tourmalines (schorl HS#112566, dravite HS#108796 and elbaite HS#98144). They were re‐evaluated for their major element and boron delta values using the same measurement procedure as the new tourmaline samples investigated. A discrepancy of about 1.5‰ in δ11B was found between the previously published reference values for established RMs and the values determined in this study. Significant instrumental mass fractionation (IMF) of up to 8‰ in δ11B was observed for schorl–dravite–elbaite solid solutions during SIMS analysis. Using the new reference values determined in this study, the IMF of the ten tourmaline samples can be modelled by a linear combination of the chemical parameters FeO + MnO, SiO2 and F. The new tourmaline RMs, together with the four established RMs, extend the boron isotope analysis of tourmaline towards the Mg‐ and Al‐rich compositional range. Consequently, the in situ boron isotope ratio of many natural tourmalines can now be determined with an uncertainty of less than 0.8‰ (2s).  相似文献   
46.
利用2015年8月至2016年7月在印度河上游流域Bagrot山谷降水稳定同位素(δ18O和δD)观测结果以及当地气象资料,利用同位素示踪及统计分析方法,并结合HYSPLIT模型,对研究区降水稳定同位素变化特征、大气水线以及水汽来源进行了分析。结果表明,观测期间Bagrot山谷降水稳定同位素的季节变化明显,δ18O与δD秋冬季偏低,春夏季偏高,且与气温变化一致,存在显著的温度效应,而降水量效应不明显。而且发现,研究区局地大气水线截距和斜率均低于全球的,反映了降水过程中云下二次蒸发作用较为强烈,特别是,不同的降水形态导致该研究区局地大气水线的斜率和截距不同。当液态降水(降雨)发生时,由于在较为干旱的气候环境下,雨滴在降落的过程中受到二次蒸发相对较强,使得局地大气水线的斜率和截距偏低;而当固态降水(降雪)发生时,由于温度较低,受再循环水汽和二次蒸发的影响较小,导致局地大气水线的斜率和截距均偏高。Bagrot山谷及其周边地区,从南到北局地大气水线的斜率相差不大,而其截距总体上随着纬度升高而降低,可能与云下二次蒸发导致稳定同位素发生的不平衡分馏逐渐强烈有关。通过Bagrot山谷站点降水稳定同位素观测结果并结合HYSPLIT模型的后向追踪,研究还发现,研究区全年主要受西风环流以及局地环流的影响。但与研究区以北的临近站点(慕士塔格、和田等)相比有所不同,由于Bagrot山谷位置更靠南,其仍然偶尔受到来自南方的海洋性水汽影响。这一研究结果可能对该地区树轮稳定同位素记录的解译具有一定的指示意义。  相似文献   
47.
Aquatic plants are essential for maintaining the diversity and stability of a lake ecosystem. Stable carbon isotopes (δ13C) of macrophytes have been widely used as a powerful tool to study ecological processes and paleoenvironmental evolution in lakes. Varying results are obtained when using the δ13C of macrophytes to study the changes in the lake environment at different spatio-temporal scales. Thus, sample preparation and subsequent laboratory analyses are crucial for studying environmental changes using the isotopic signal retained in the macrophytes, and are essential for the interpretation of isotope-environment relationships. This study analyzed the δ13C of different tissue components of macrophytes in three lakes of the lower Yangtze River basin, and a correlation analysis was performed on aquatic environments influencing the δ13C values in the different tissue components of macrophytes. The test results showed the difference between the δ13C values of the whole sample and cellulose. Relative analyses indicated that the major factors contributing to the δ13C variability in macrophytes were pH and the concentration of dissolved inorganic carbon (DIC). The δ13C of α-cellulose (δ13CAC) is more sensitive to environmental variables than that of the whole sample (δ13CW) and holocellulose (δ13CHC). The results of this study imply that extraction of α-cellulose is a prerequisite for research on the changes in lake environment using δ13C of macrophytes. This study aims to provide theoretical and data basis for further research on the environmental and ecological change using stable carbon isotopes of aquatic plants.  相似文献   
48.
Questions persist about interpreting isotope ratios of bound and mobile soil water pools, particularly relative to clay content and extraction conditions. Interactions between pools and resulting extracted water isotope composition are presumably related to soil texture, yet few studies have manipulated the bound pool to understand its influence on soil water processes. Using a series of drying and spiking experiments, we effectively labelled bound and mobile water pools in soils with varying clay content. Soils were first vacuum dried to remove residual water, which was then replaced with heavy isotope-enriched water prior to oven drying and spiking with heavy isotope-depleted water. Water was extracted via centrifugation or cryogenic vacuum distillation (at four temperatures) and analysed for oxygen and hydrogen isotope ratios via isotope ratio mass spectrometry. Water from centrifuged samples fell along a mixing line between the two added waters but was more enriched in heavy isotopes than the depleted label, demonstrating that despite oven drying, a residual pool remains and mixes with the mobile water. Soils with higher clay + silt content appeared to have a larger bound pool. Water from vacuum distillation samples have a significant temperature effect, with high temperature extractions yielding progressively more heavy isotope-enriched values, suggesting that Rayleigh fractionation occurred at low temperatures in the vacuum line. By distinctly labelling bound and mobile soil water pools, we detected interactions between the two that were dependent on soil texture. Although neither extraction method appeared to completely extract the combined bound and mobile (total water) pool, centrifugation and high temperature cryogenic vacuum distillations were comparable for both δ2H and δ18O of soil water isotope ratios.  相似文献   
49.
开展长江中下游地区玢岩型铁矿床轴向原生晕地球化学分析及建模,可弥补地球物理勘探结果的多解性及探测精度的局限性,对定位和评价深部盲矿体具有至关重要的作用。文章在以往研究的基础上,开展庐枞盆地泥河玢岩型铁矿床钻孔原生晕的研究工作,采用多元统计分析方法,查明了主要成矿指示元素在不同地质体中的富集和亏损,确定了磁铁矿、硫铁矿和硬石膏矿体的矿中、近矿及远矿指示元素组合,结合矿床成因模型,建立了泥河玢岩型铁矿床地质-原生晕地球化学找矿模型,通过罗河和小包庄玢岩型铁矿床的佐证,认为该模型可以应用于长江中下游成矿带玢岩型铁矿床的勘探工作中。  相似文献   
50.
条带状铁建造(BIF)是形成于前寒武纪海洋中的化学沉积岩,记录了古海洋氧化还原状态的重要信息。华北克拉通广泛分布的新太古代和古元古代BIF,是了解古元古代大氧化事件(GOE)前后古海洋氧化还原环境变化的理想对象。初步研究表明,华北克拉通新太古代BIF主要为磁铁矿型氧化物相和硅酸盐相,极少数出现碳酸盐相;古元古代BIF包括赤铁矿型和磁铁矿型氧化物相、硅酸盐相和碳酸盐相,其中赤铁矿相是古元古代BIF独有的。以上矿物学特征表明,新太古代和古元古代水体的氧化还原条件是不同的。华北克拉通新太古代BIF的稀土元素组成缺乏强烈的负Ce异常,反映同期海水氧含量非常低,为缺氧状态; 但少量BIF也包含有负Ce异常,同时具有较大变化范围的Th/U值,指示新太古代海洋的局部水体氧含量相对较高,呈弱氧化状态。与新太古代BIF相比,古元古代BIF的Ce异常变化较大,包括无异常、正异常和负异常,尤其是赤铁矿相BIF具明显的负Ce异常,表明古元古代水体的氧含量和氧化还原结构已发生了明显变化; 结合华北克拉通BIF的Ni/Co、V/(V+Ni)和Th/U等比值特征,认为古元古代海洋呈次氧化—氧化环境。新太古代BIF 强烈富集重铁同位素,S同位素非质量分馏效应较为明显;而古元古代BIF相对富集轻铁同位素,S同位素非质量分馏效应不明显。综上,新太古代海洋环境整体缺氧,但局部可能存在氧气“绿洲”,暗示光合产氧作用在太古代晚期已经存在;大氧化事件期间及之后的古海洋总体具上部氧化、下部还原的分层特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号